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Abstract—We study the problem of placing bearing sensors measuring bearing corrupted by unknown but
sensors so as to estimate the location of a target in a pounded noise. Bounded noise models provide a useful
square environment. We consider sensors with unknown - giiarative to probabilistic models especially when a

but bounded noise: the true location of the target is . . . .
guaranteed to be in a2a-wedge around the measurement, P'€CIS€ device model is not available (perhaps due to the

where o is the maximum noise. The quality of the place- difficulty of calibration or changing device parameters).
ment is given by the area or diameter of the intersection Such models have long been used for state estimation [2]
of measurements from all sensors in the worst-case (i.e. and for sensor fusion in robotics applications [7].
regardless of the target’s location). We study the bi-criteria As an example, consider an application where sensors

optimization problem of placing a small number of sensors are deploved to be used as beacons for localizing a
while guaranteeing a worst-case bound on the uncertainty. ploy u 1zIng

Our main result is a constant-factor approximation: ~ navigating robot Eigure J). At each time inStt'?mt, th?
We show that in general whena < Z, at most 9n*  robot can query the sensor network for their bearing
sensors placed on a triangular grid has diameter and area measurements towards the robot. In the bounded uncer-
uncertainty of at most 5.88U, and 7.76U} respectively, ainty model, the true bearing to the robot is guaranteed

wheren”, Uy, and U} are the number of sensors, diameter L o
and area uncertainty of an optimal algorithm. In obtaining to lie in a 2D wedge which is centered at the measured

these results, we present some structural properties which beari.ng anq has an apex angle equal to the maximum
may be of independent interest. We also show that in Sensing noise. Measurements from multiple sensors are

the triangular grid placement, only a constant number combined by intersecting the corresponding wedges. The
SLCSG‘?{‘;ﬂ:; ’;e%(:();%rge tﬁ;tt"gﬁdbéo uz(;'zj'e;’; tih:sigr?isnléed uncertainty in the robot’s estimate is usually taken to be
energy/ban’dwidth efficient sensor selection schemes. the dlame-ter or area of the mterseqnon. We. seek worst-
case quality guarantees for our estimate: Given the true

|. INTRODUCTION location of the robot, imagine an adversary choosing

the noise values for sensors. The true location can be

Sensor placement for target localization is a fundaznywhere in the intersection and we would like this set
mental problem in robotics and sensor networks. A goog, he “small” no matter where the robot is.

placement scheme can improve the performance of sen-

sor networks in applications such as intruder detectionin = = - o o L -

surveillance, robot navigation using exteroceptive mea- . . . . 9 D & .
surements, and providing location information to mobile | AL | = I & ’
devices for location-aware computing — a technology R a e i B
identified as key for the advancement of robotics [3]. Y 4 A

o o o o o o

Most sensors employed for localization have a strong
structure associated with their sensing model. This strugig. 1: Here, the area of intersection for a square’gmitidle)
ture plays a critical role in how information from multi- and random placement (right), for the true robot location
ple sensors can be combined. In this paper, we study tgvarked by triangle), is 1.32 and 3.27 times that of the

sensor placement problem for bearing sensors which att]_r@ngular placement (left). In this paper, we derive the rela-

. . ionship between the triangular grid parameters and worst-case
commonly used in robotic and networked Sensor Syjncertainty, and show that the number of sensors required are
tems: monocular cameras, microphone/acoustic arraygsar optimal.

directional radio antennas, passive infrared receivers,
etc., all measure bearing towards a target. We considerye consider a simple workspace for the problem:

. _ The target can lie anywhere within a square without
The authors are with the Department of Computer Science and L . . . .
Engineering, University of Minnesota, Minneapolis, MN, AIS @ny obstacles or visibility constraints. Even in this basic

{t okekar, i sl er }@s. um. edu setting, devising a sensor placement scheme is tricky. It



is intuitively clear that the optimal placement should bas visible from at least two sensors and their relative
some kind of a uniform grid. However it is not clearangle lies within a desired interval. They presented a
if the grid should be square, triangular or some othelog factor approximation, up to a fine discretization.

shape. Further, optimizing parameters of the grid (€.9. | addition to the relative angles, the uncertainty is
resolution) is not straightforward because as illustrateg|sq affected by the distance between the sensors and
in Figure ] the estimate is obtained by combiningthe target. Geometric Dilution of Precision (GDOP)
measurements frorall sensors. This makes it difficult is one measure relating the uncertainty with distance
to express its area or diameter m_closed—form in ordefng relative angles. Tekdas and Isler [12] presented a
to optimize grid parameters. While there have beepjacement scheme which guarantees that for any target
attempts to find the optimal solution [14], the problemgcation there are always two sensors whose GDOP is
of optimal placement for bearing sensors remains 0peg. constant factor of the GDOP achieved by any two
In this paper, we make progress towards solvingensors from an optimal placement. We do not restrict
this fundamental problem. We focus on placement ofhe estimator to use only two sensors, instead, allow
a triangular grid and derive the relationship betweegompining all measurements. Ercan et al. [6] studied the
uncertainty and grid resolution. We prove that the NUMproblem of placing horizontal scan-line cameras along
ber of sensors required to achieve a desired uncertairgye boundary of a circular room to minimize least-
is only a constant times that of an optimal algorithmsqyares localization error for a target with a given prior.
Furthermore for a triangular grid, only a constant NUMThejr placement result shows that a uniform placement
ber of sensors can be queried to obtain performanggong the boundary is optimal. We allow sensors to be
comparable to queryingll sensors. This implies for placed anywhere within a square workspace, without

our motivating example, the robot may query only &ssuming any prior for the target's location.
fixed number of nearby sensors to localize itself without . .
Isler and Magdon-Ismail [9] considered the problem

losing much estimation quality. of selecting a small subset of sensors from a given
The rest of the paper is organized as follows: We g g

begin by presenting the related work in SectibnWe placement; each sensor’s output is a convex subset of the

. . . lane. They proved that irrespective of the total number
describe the sensing model and formalize the proble )
. ) : of sensors, there is always a subset of four measurements
in Sectionlll. The analysis for lower bounds for an

) : that can be selected, which when combined yield an
optimal placement, and upper bounds for a triangular . . ;
. . . . Intersection area at most twice of that obtained by
grid placement is presented in Sectiohs and V. . . .
. . intersecting all measurements. In their problem, the

Complete proofs for the analysis are presented in th

. . Mlacement of the sensors and the actual sensor mea-
accompanying technical report [13]. We conclude wit .
: : ) . surements are already given. For the same placement of
a discussion of our results in Sectidfh.

sensors, this subset would change if the measurement
Il. RELATED WORK changes. This poses an interesting question whether

o there is some placement of sensors for which the same

The problem of optimizing the placement of sen-,pset can be used to approximate the uncertainty region

sor nodes has received significant attention from thg,. yifferent (but perhaps “nearby”) measurements. In
sensor networks community [15]. A large amount Ofpis paper, we present a result in this direction for
research has focused on self-localization of ”etwork%earing measurements with bounded noise.

for example in the case of mobile, reconfigurable sensor . .
networks [8] and for stationary sensor networks with Boupded uqcertalnty models haye previously been
reference anchor nodes [1]. In our present work, Wgsed in robotics problems. I_Detweﬂer et al. [4] and
assume that the locations of the sensors themselv gletzer and Taylor [11] studied the problem of self-

are accurately known and focus on the complementa&cal'z"’:.t'orll In passive beacop IZgldsband (;ot(;ot netvro_rkts
problem of placing sensors so as to localize targets. ESPEClivEly, using Sensors yielding bounded uncertainty

For bearing sensors, the uncertainty in target's e neasurements. Song and O’Kane [10] studied the prob-

timate depends on the relative position of the senso &m pf mamta_mlng ap_proxma’qon for _robots possible
and the target. Motivated by this, Efrat et al. [5] studie ocations obtained by intersecting pre-images from sen-

the problem of minimizing the number of sensors to b ors y|eld|ng m-easgremen.ts with pounded NOISE. Set
placed in a polygon, such that each point in the polygo embership estimation [2] is an estimator designed for

sensors yielding unknown but bounded noise, which has

1We randomly place additional sensors to the square grid, &0 thbeen applied for robot chahzaﬂon using be"’?”ng me?'
it has the same number of sensors as the triangular grid. surements [7]. We describe our bounded noise sensing



and uncertainty model in the next section.

Ill. PROBLEM FORMULATION

In this section, we first describe the notation, define ™.
the sensing and estimation models, and use them to '
formulate the problem studied in this paper.

A. Notation and Sensing Model

Fig. 3: Two estimates for the same sensors and target location,
but different measurements resulting in different uncertainty.
We use worst-case intersection as the uncertainty measure.

set of measurements to maximize the uncertainty in
the target estimate. We use two measures (area and
diametef of P) to define the uncertainty. The diameter

Fig. 2: The actual measuremetit lies anywhere betweefj+ uncertainty of a placemertt is defined as:
a. 6! is the true bearing. The wedge for a given measurement N . - m
is guaranteed to contain the true target location Up(S) = max G,Eéag’((z) diamete(P(5,6™)), (1)

The workspaced is ad x d square. The target's true where 9(_x) is the set of valid measu.rements that can
locationz can be anywhere withipl. Consider a sensor P& obtained fromS for a target locationz. The area
placementS = {s, ..., s,} where each; € A denotes uncertainty can be similarly defined.
the sensor location. Each sensor measures the beariegOb_ .
towards the target a&™ = 0! + n;, whered? € [0, 2) - Objective
is the true bearingHRigure 2. n; € [—a,+a] is the Broadly, there are two factors that affect the worst-
bounded sensor noise. is the bound on the absolute case uncertainty: (i) the number of sensors, and (ii) the
noise in the sensor. The pre-image of a measuremeitation of placed sensors. In this work, we take the
0 is a 2D wedge (denoted By (s;, 67™)) as shown in approach that the user specifies a desired uncertainty and
Figure 2 This wedge is not the same as a fixed fieldthe objective is to minimize the number of sensors and
of-view sensor; for the same target location, the sensdind the corresponding placement to guarantee that the
can receive any sensing wedge of angular witlthso  worst-case uncertainty is below the user-specified value.

long as it contains the true target location. In particular, we address the following problem:
The target estimate obtained by combining a set of Find the minimum number of sensors required and
measurement®™ = [07,...,0™]" from n sensors, the corresponding placement to achieve a desired diam-

is defined as the intersection of thesensing wedges eter uncertainty Uy, (or area uncertainty U7).

W (s;,0m). Thatis, P(S,0™) £ i, W (s;,0™). Here Our main result shows that by placing sensors on a
P is a convex polygonal region which can possibly beriangular grid-like placement, 9 times as many sensors
unbounded. as an optimal algorithm are sufficient to guarantee 5.88
times the desired diameter uncertainty (respectivelyg 7.7

R times the area uncertainty) when the maximum sensing

The size of P depends on the actual measurement$oise is less tharf .
Figure 3shows two instances where the sizebtliffers Theorem 1: Let the maximum absolute noise for
significantly for different measurements obtained fronphearing sensors be < o < T Let the desired
the same placement of sensors. The actual measuremeditimeter uncertainty for @ x d square environment
obtained by the sensors cannot be controlled by the usge (7 < —4_ (respectively, area uncertainty be

. . sin « !

However, we will show that by carefully pla(_:mg the ;o _ Trsllgg a2). If an optimal placement algorithm
sensors one can guarantee there always exists a g ieves/% (respectively /%) with n* sensors, then a
set of valid measurements. _ triangular grid-like placement achieves at mosisU},

We model the objective using an adversarial process:
Given a pla_lceme_nt_ of sensors, an adversary selec_ts AThe diameter of a polygon is the length of the largest segment
target location within the square and a correspondingpntained completely within the polygon.

B. Adversarial Formulation of Uncertainty




(respectively, at most.76U ;) with at mostdn* sensors. S of n bearing sensors, then the diameter uncer-
tainty is bounded ad/p(S) > 2rsina (respectively,
The analysis forTheorem 1is based on covering a Ua(S) > 7r?sin® a).
d x d square with equilateral triangles of sensors. When To prove Lemma 2 we show that when the target
the desired uncertainty is higher than the restriction ities at the center ofC and each sensor receives a
Theorem land comparable to the size gf, an optimal measurement equal to the true bearing, a circle of radius
placement may use very few sensors. Nevertheless, evesin o centered at the target lies completely within the
for that case the total number of sensors for the grid-likatersection of all sensing wedges. This instance gives a
placement is bounded (given lyemma §. lower bound for the worst-case uncertainty.

In the following sections, we analyze the number of When a desired uncertainty is given, we can apply
sensors required for an optimal algorithm and for d.emma 2to find the radius of the largest such circle
triangular grid-like placement. In this paper, we statdying in the workspace4 and not containing any sensor.
the key lemmas and sketch their proofs. The full proofs Corollary 1: Let S* be an optimal placement achiev-
are included in the accompanying technical report [13]ing a desired diameter uncertairity, (respectively, area

uncertaintyU’;) in a square workspace of sidelf »* i

IV. LOWERBOUNDS FOROPTIMAL PLACEMENT the radius of the largest circle lying completely within
In this section, we first present lower bounds on thé4 and TOt containing any sensor In its interior, then

uncertainty achieved by any placement of sensors in thé < 25,1 (respectively;™ < /= blia)

plane. We apply this to bound the number of sensors Corollary limplies an upper bound on how far each

placed within.A by an optimal algorithm. point in A can be from any sensor or the boundary
First consider the case when the maximum sensirff -A. This allows us to bound the number of sensors

noisea > Z, i.e., the sensing wedges are at least half€quired for an optimal algorithm as a function «of.

planes. We show that the adversary can always choos€grollary 2 states that(%;) sensors are needed to

valid measurement set for any placement, such that tigklarantee coverage ofdax d area.

sensing wedges have an unbounded intersection. Corollary 2: Letr* be the radius of the largest circle
Lemma 1. For any placemen$ of n bearing sensors within a square of sidel, not containing any sensor

with maximum absolute noise > T, there exists a from an optimal placement in its interior. If the desired

measurement set™ such that the intersection of the diameter uncertainty id/, < dsina (respectively,

wedges (), W (s;,607")) is unbounded. U, < d“sm T=-2) then the number of sensors for an
1= ? 7 2
Lemma limplies that wheno > 7 the uncertainty optimal algorithmn* > %

can be as large asi, i.e., Ua(S) = ©O(d?) and Whend < 2r*, the desired uncertainty is comparable

Up(S) = ©(d) for any placement of sensors, includingto .4, and the optimal algorithm would place very few
the optimal. The proof is based on constructing a simpleensors, yielding a trivial lower bound. The bound on
instance whenx = 7, i.e., the sensing wedges are halfthe uncertainty implies thad > 2r* is an interesting
planes. We create a measurement set where the linesse: Ifd > 2r*, then there is a smaller square within
corresponding to all half-planes pass through the target where all points are more thart away from the
location. We assign directions to all half-planes to ensureoundary and hence require at least one sensor within
that their intersection is unbounded. r*. We can show that the set of circles of radiidrawn

Lemma lis not surprising, sincer > 7 corresponds about each sensor in the optimal placement, should form
to very high noise. In practice, bearing sensors are muehcover of this smaller square, yielding the bound.
more accurate. For the rest of the paper, we only focus
on the case when the maximum sensing noise 7

In the following, we will lower bound the uncertainty Next, we analyze the number of sensors required
for any placement parametrized by the distance of thend the uncertainty for a triangular grid-like placement.
target to the closest sensor. Recall frdbguation 1  While for lower bounds it sufficed to consider specific
the uncertainty is defined as theax over all possible instances, upper bounds require considering all possible
target locations, and all valid measurements. Hence, ftarget locations and sets of measurements.
a lower bound, it is sufficient to consider a particular
target location and valid measurement set, as given nefY, Uncertainty with Triangular Grid

Lemma 2: If there exists a circleC with radius r Before the main analysis, first consider two special
which doesn't contain any sensor from a placementonfigurations of sensors: (i) three sensors placed on

V. PERFORMANCE OF THETRIANGULAR GRID

4



the vertices of an equilateral triangles; sos3 with side

r, when(0 < o < &, and (i) six sensors placed on
the vertices of a regular hexagon whén < o <

Z. For case (i), the target may lie anywhere within A
Asis2s3 (Figure 4(a). We further divide the analysis 3
into intervals based on, given next.
Lemma 3: Let Asyssss be an equilateral triangle of Co
sider with a bearing sensor placed at each vertex. If the ()
target lies within/Asys2s3 and S = {s1, sz, s3} then Fig. 4: (a) Based omy, we upper bound the uncertainty
1.35rsina 0<a< & When.the target lies within an equilateral triangle or a circle
: - S 18 contained within a regular hexagon of sensors. (b) We pad the
Up(S) << 2.04r 75 Sa< s, three regions with additional sensors to ensure any point in
(1 " L) P I <X is enclosed by an equilateral triangle of sensors.
V3 2 = 6

and,
2¢ then O(k?) sensors placed on a triangular grid are

2 oI 2 s .. . . .
23-4267” Sm- o 0<a<y;, sufficient for bounded intersection of sensing wedges
Ua(S) < @T’“ +10.1(rsina)® & <a< %, when the target lies within a circle of radiq%.
3\/§T2 T T
e 13 Sa<g- B. Number of Sensors with Triangular Grid

The proof partitions the triangle into three regions, and Lemma 3gives an upper bound on the uncertainty
assigns sensors for each region such M valid for a placement of sensors id, if there exists an
set of measurements results in bounded intersectiopguilateral triangle of sensors enclosing any poin#in
The sensing wedges corresponding to each partition apdnce the sensors cannot be placed outsidé,akgions
approximated to bound their intersection. near the boundary of4 may not have an enclosing
When o > %, the sensing wedges become too |arg@quilateral triangle if sensors are placed only on a
to result in bounded intersection with just three sensor§iangular grid. The three regions where this occurs are
Instead we use six sensors, placed on a regular hexagarked.A:, Az, As in Figure 4(b) We place additional
with centero and sider, to bound their intersection. sensors within these regions to ensure that any point
The target can lie anywhere within a circle of radiugn A is enclosed by an equilateral triangle of sensors.
-z centered ato. We find an upper bound to the Lemma 6 states that(’)(f—z) sensors are sufficient to
uncertainty, by finding the intersection of the union ofcover a square of areax d.
all sensing wedges for each sensor, corresponding to allLémma 6 (Upper Bound on Number of Sensors): If

target locations within the circle. wy = |d/r]+1,, we = |d/V3r|+1,b. = |(d—5)/r],
g I _ VBr
Lemma 4: L_etsl S 86 be a regular hexagon of side b, = V 3 4 1 are the number of sensors in odd
and centep with a bearing sensor placed at each vertex, Var

and maximum absolute noise < a < 7. If the target and even rows and columns, respectively of a

lies inside a circle of radius’- centered ab then, triangular grid with sider in a square of sidel, then
V3 wrwe + brbe + 3(2w, + b,) + 8 sensors are sufficient
Up({s1,...,86}) <7 (sin? + 3.76sin o + 1.232) to cover the square with equilateral triangles of side
and, Ua({s1,...,56}) < LorUp({s1,. .., s6}. The lower and upper bounds obtained can be ap-

ied to get the main result of this paper: Recall from

Lemma 4bounds the intersection when the sensin(\%I - .
wedges are at most a quadrant<{ T), and the target orollary 1, that an optimal aIgoUrLthm has to place
D

lies within a circle of radius’-. Lemma 1shows that & SENsor within distance” < 5520 (equivalently,
when sensing wedges are at least a half-plang (), r* < %Si}la) of every pointA to ensure the desired

the resulting intersection can be unbounded in the worstincertainty. For the triangular grid placement, set the
case. We can extend the resultimma 4for o« = Z —e¢ q%rid length as- = Up (respectively; = JUL _1 ).

2 - -
2sin o T sina

with 0 < ¢, to bound the number of sensors place ence,r* < r. Corollary 2 gives a lower bound on

on a triangular grid, sufficient to guarantee that thene nymber of sensors required for an optimal algorithm
mtersectlor.l of all wedges is bounded. _ _in terms of 7*, and Lemma 6 gives an upper bound
Lemma 5. Let the maximum absolute sensing noisgq; the grid-like placement in terms of. Lemma 3

bea =7 —ewith 0 <e If sin™ (ﬁ + 57—1 < and Lemma 4bound the uncertainty of the grid-like



placement in terms of. Using r* < r and substituting question we pursue in our future work. Future work also
the value ofr, the result inTheorem 1can be obtained. includes addressing sensing limitations such as vigpbilit
The upper bounds fronLemma 3 and Lemma 4 constraints and placement in complex environments.

reveal that only a small number of sensors in our
placement suffice to achieve an uncertainty comparable
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corresponding to the enclosing triangle or hexagon need
be queried for their measurements.

Corollary 3: Given a target location within a square 1]
and desired diameter uncertairity, (respectively, area
uncertaintyU}), if sensors are placed on a triangular

. . 2
grid with sider = QZQ(X (respectively; = Ufshﬁa), .
three sensors are sufficient whén< o < & and six 4

sensors are sufficient wheh < o < 7 to ensure diam-
eter uncertainty at most88U7;, (respectively,7.76U3}).

Corollary 3provides a sensor selection method which (4]
may be useful in sensor network applications with
energy or bandwidth constraints that require activatingl5]
only a small number of sensors.

VI. CONCLUDING REMARKS

In this paper, we studied a placement problem for[
bearing sensors. We used a bounded uncertainty formu-
lation which allowed us to represent each measurement,
as a wedge containing the target’s location. The quality
of the estimated target location was quantified by the
diameter or the area of the intersection of wedges. I
this setting, a fundamental question that arises is: What
is the minimum number and placement of sensors thall
guarantees that no matter where the target is, or what the
actual measurements are, the uncertainty in the estimate)
is below a desired level?

This basic question turned out to be surprisingly
hard due to the fact that the quality of the estimatiomi]
depends on the locations of all sensors as well as the ac-
tual measurements. Our results provided insights about
the structure of this problem and yielded a placemeniz]
scheme with constant-factor approximation guarantees.
In particular, we showed that unless the sensor noise |
too large, a placement of sensors on a triangular grid
yields a good performance. Further, (excluding some
extreme cases) we showed that for the triangular grid
placement, if a rough estimate of the target location is
available, one can obtain a good estimate by querying?l
only a fixed number of sensors. This latter sensor
selection scheme is particularly appealing for resourges)
constrained sensor-network applications.

Can this result be improved, perhaps by showing
that the triangular placement is optimal? This is a

6] A. Ercan, D. Yang, A. El Gamal, and L. Guibas.

] P. Tokekar and V. Isler.
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