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Abstract— We study the problem of placing bearing
sensors so as to estimate the location of a target in a
square environment. We consider sensors with unknown
but bounded noise: the true location of the target is
guaranteed to be in a2α-wedge around the measurement,
where α is the maximum noise. The quality of the place-
ment is given by the area or diameter of the intersection
of measurements from all sensors in the worst-case (i.e.
regardless of the target’s location). We study the bi-criteria
optimization problem of placing a small number of sensors
while guaranteeing a worst-case bound on the uncertainty.

Our main result is a constant-factor approximation:
We show that in general when α ≤ π

4
, at most 9n∗

sensors placed on a triangular grid has diameter and area
uncertainty of at most 5.88U∗

D and 7.76U∗

A respectively,
wheren∗, U∗

D and U∗

A are the number of sensors, diameter
and area uncertainty of an optimal algorithm. In obtaining
these results, we present some structural properties which
may be of independent interest. We also show that in
the triangular grid placement, only a constant number
of sensors need to be activated to achieve the desired
uncertainty, a property that can be used for designing
energy/bandwidth efficient sensor selection schemes.

I. I NTRODUCTION

Sensor placement for target localization is a funda-
mental problem in robotics and sensor networks. A good
placement scheme can improve the performance of sen-
sor networks in applications such as intruder detection in
surveillance, robot navigation using exteroceptive mea-
surements, and providing location information to mobile
devices for location-aware computing – a technology
identified as key for the advancement of robotics [3].

Most sensors employed for localization have a strong
structure associated with their sensing model. This struc-
ture plays a critical role in how information from multi-
ple sensors can be combined. In this paper, we study the
sensor placement problem for bearing sensors which are
commonly used in robotic and networked sensor sys-
tems: monocular cameras, microphone/acoustic arrays,
directional radio antennas, passive infrared receivers,
etc., all measure bearing towards a target. We consider
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sensors measuring bearing corrupted by unknown but
bounded noise. Bounded noise models provide a useful
alternative to probabilistic models especially when a
precise device model is not available (perhaps due to the
difficulty of calibration or changing device parameters).
Such models have long been used for state estimation [2]
and for sensor fusion in robotics applications [7].

As an example, consider an application where sensors
are deployed to be used as beacons for localizing a
navigating robot (Figure 1). At each time instant, the
robot can query the sensor network for their bearing
measurements towards the robot. In the bounded uncer-
tainty model, the true bearing to the robot is guaranteed
to lie in a 2D wedge which is centered at the measured
bearing and has an apex angle equal to the maximum
sensing noise. Measurements from multiple sensors are
combined by intersecting the corresponding wedges. The
uncertainty in the robot’s estimate is usually taken to be
the diameter or area of the intersection. We seek worst-
case quality guarantees for our estimate: Given the true
location of the robot, imagine an adversary choosing
the noise values for sensors. The true location can be
anywhere in the intersection and we would like this set
to be “small” no matter where the robot is.

Fig. 1: Here, the area of intersection for a square grid1(middle)
and random placement (right), for the true robot location
(marked by triangle), is 1.32 and 3.27 times that of the
triangular placement (left). In this paper, we derive the rela-
tionship between the triangular grid parameters and worst-case
uncertainty, and show that the number of sensors required are
near optimal.

We consider a simple workspace for the problem:
The target can lie anywhere within a square without
any obstacles or visibility constraints. Even in this basic
setting, devising a sensor placement scheme is tricky. It



is intuitively clear that the optimal placement should be
some kind of a uniform grid. However it is not clear
if the grid should be square, triangular or some other
shape. Further, optimizing parameters of the grid (e.g.
resolution) is not straightforward because as illustrated
in Figure 1, the estimate is obtained by combining
measurements fromall sensors. This makes it difficult
to express its area or diameter in closed-form in order
to optimize grid parameters. While there have been
attempts to find the optimal solution [14], the problem
of optimal placement for bearing sensors remains open.

In this paper, we make progress towards solving
this fundamental problem. We focus on placement on
a triangular grid and derive the relationship between
uncertainty and grid resolution. We prove that the num-
ber of sensors required to achieve a desired uncertainty
is only a constant times that of an optimal algorithm.
Furthermore for a triangular grid, only a constant num-
ber of sensors can be queried to obtain performance
comparable to queryingall sensors. This implies for
our motivating example, the robot may query only a
fixed number of nearby sensors to localize itself without
losing much estimation quality.

The rest of the paper is organized as follows: We
begin by presenting the related work in SectionII . We
describe the sensing model and formalize the problem
in Section III . The analysis for lower bounds for an
optimal placement, and upper bounds for a triangular
grid placement is presented in SectionsIV and V.
Complete proofs for the analysis are presented in the
accompanying technical report [13]. We conclude with
a discussion of our results in SectionVI .

II. RELATED WORK

The problem of optimizing the placement of sen-
sor nodes has received significant attention from the
sensor networks community [15]. A large amount of
research has focused on self-localization of networks,
for example in the case of mobile, reconfigurable sensor
networks [8] and for stationary sensor networks with
reference anchor nodes [1]. In our present work, we
assume that the locations of the sensors themselves
are accurately known and focus on the complementary
problem of placing sensors so as to localize targets.

For bearing sensors, the uncertainty in target’s es-
timate depends on the relative position of the sensors
and the target. Motivated by this, Efrat et al. [5] studied
the problem of minimizing the number of sensors to be
placed in a polygon, such that each point in the polygon

1We randomly place additional sensors to the square grid, so that
it has the same number of sensors as the triangular grid.

is visible from at least two sensors and their relative
angle lies within a desired interval. They presented a
log factor approximation, up to a fine discretization.

In addition to the relative angles, the uncertainty is
also affected by the distance between the sensors and
the target. Geometric Dilution of Precision (GDOP)
is one measure relating the uncertainty with distance
and relative angles. Tekdas and Isler [12] presented a
placement scheme which guarantees that for any target
location there are always two sensors whose GDOP is
a constant factor of the GDOP achieved by any two
sensors from an optimal placement. We do not restrict
the estimator to use only two sensors, instead, allow
combining all measurements. Ercan et al. [6] studied the
problem of placing horizontal scan-line cameras along
the boundary of a circular room to minimize least-
squares localization error for a target with a given prior.
Their placement result shows that a uniform placement
along the boundary is optimal. We allow sensors to be
placed anywhere within a square workspace, without
assuming any prior for the target’s location.

Isler and Magdon-Ismail [9] considered the problem
of selecting a small subset of sensors from a given
placement; each sensor’s output is a convex subset of the
plane. They proved that irrespective of the total number
of sensors, there is always a subset of four measurements
that can be selected, which when combined yield an
intersection area at most twice of that obtained by
intersecting all measurements. In their problem, the
placement of the sensors and the actual sensor mea-
surements are already given. For the same placement of
sensors, this subset would change if the measurement
changes. This poses an interesting question whether
there is some placement of sensors for which the same
subset can be used to approximate the uncertainty region
for different (but perhaps “nearby”) measurements. In
this paper, we present a result in this direction for
bearing measurements with bounded noise.

Bounded uncertainty models have previously been
used in robotics problems. Detweiler et al. [4] and
Spletzer and Taylor [11] studied the problem of self-
localization in passive beacon fields and robot networks
respectively, using sensors yielding bounded uncertainty
measurements. Song and O’Kane [10] studied the prob-
lem of maintaining approximation for robot’s possible
locations obtained by intersecting pre-images from sen-
sors yielding measurements with bounded noise. Set
membership estimation [2] is an estimator designed for
sensors yielding unknown but bounded noise, which has
been applied for robot localization using bearing mea-
surements [7]. We describe our bounded noise sensing
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and uncertainty model in the next section.

III. PROBLEM FORMULATION

In this section, we first describe the notation, define
the sensing and estimation models, and use them to
formulate the problem studied in this paper.

A. Notation and Sensing Model

si 2
x

Fig. 2: The actual measurementθmi lies anywhere betweenθti±
α. θti is the true bearing. The wedge for a given measurement
is guaranteed to contain the true target locationx.

The workspaceA is a d× d square. The target’s true
locationx can be anywhere withinA. Consider a sensor
placementS = {s1, . . . , sn} where eachsi ∈ A denotes
the sensor location. Each sensor measures the bearing
towards the target asθm

i
= θt

i
+ ni, whereθt

i
∈ [0, 2π)

is the true bearing (Figure 2). ni ∈ [−α,+α] is the
bounded sensor noise.α is the bound on the absolute
noise in the sensor. The pre-image of a measurement
θm
i

is a 2D wedge (denoted byW (si, θ
m
i
)) as shown in

Figure 2. This wedge is not the same as a fixed field-
of-view sensor; for the same target location, the sensor
can receive any sensing wedge of angular width2α so
long as it contains the true target location.

The target estimate obtained by combining a set of
measurementsθm = [θm1 , . . . , θmn ]T from n sensors,
is defined as the intersection of then sensing wedges
W (si, θ

m
i
). That is,P̂ (S, θm) ,

⋂n

i=1 W (si, θ
m
i
). Here

P̂ is a convex polygonal region which can possibly be
unbounded.

B. Adversarial Formulation of Uncertainty

The size ofP̂ depends on the actual measurements.
Figure 3shows two instances where the size ofP̂ differs
significantly for different measurements obtained from
the same placement of sensors. The actual measurements
obtained by the sensors cannot be controlled by the user.
However, we will show that by carefully placing the
sensors one can guarantee there always exists a good
set of valid measurements.

We model the objective using an adversarial process:
Given a placement of sensors, an adversary selects a
target location within the square and a corresponding

s1

s2

s3 s4

Fig. 3: Two estimates for the same sensors and target location,
but different measurements resulting in different uncertainty.
We use worst-case intersection as the uncertainty measure.

set of measurements to maximize the uncertainty in
the target estimate. We use two measures (area and
diameter2 of P̂ ) to define the uncertainty. The diameter
uncertainty of a placementS is defined as:

UD(S) , max
x∈A

max
θm∈θ(x)

diameter(P̂ (S, θm)), (1)

where θ(x) is the set of valid measurements that can
be obtained fromS for a target locationx. The area
uncertainty can be similarly defined.

C. Objective

Broadly, there are two factors that affect the worst-
case uncertainty: (i) the number of sensors, and (ii) the
location of placed sensors. In this work, we take the
approach that the user specifies a desired uncertainty and
the objective is to minimize the number of sensors and
find the corresponding placement to guarantee that the
worst-case uncertainty is below the user-specified value.
In particular, we address the following problem:

Find the minimum number of sensors required and
the corresponding placement to achieve a desired diam-
eter uncertainty U∗

D
(or area uncertainty U∗

A
).

Our main result shows that by placing sensors on a
triangular grid-like placement, 9 times as many sensors
as an optimal algorithm are sufficient to guarantee 5.88
times the desired diameter uncertainty (respectively, 7.76
times the area uncertainty) when the maximum sensing
noise is less thanπ4 .

Theorem 1: Let the maximum absolute noise for
bearing sensors be0 < α ≤ π

4 . Let the desired
diameter uncertainty for ad × d square environment
be U∗

D
< d

7 sinα
(respectively, area uncertainty be

U∗
A

< π sin2
α

196 d2). If an optimal placement algorithm
achievesU∗

D
(respectively,U∗

A
) with n∗ sensors, then a

triangular grid-like placement achieves at most5.88U∗
D

2The diameter of a polygon is the length of the largest segment
contained completely within the polygon.
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(respectively, at most7.76U∗
A

) with at most9n∗ sensors.

The analysis forTheorem 1is based on covering a
d×d square with equilateral triangles of sensors. When
the desired uncertainty is higher than the restriction in
Theorem 1and comparable to the size ofA, an optimal
placement may use very few sensors. Nevertheless, even
for that case the total number of sensors for the grid-like
placement is bounded (given byLemma 6).

In the following sections, we analyze the number of
sensors required for an optimal algorithm and for a
triangular grid-like placement. In this paper, we state
the key lemmas and sketch their proofs. The full proofs
are included in the accompanying technical report [13].

IV. L OWER BOUNDS FOROPTIMAL PLACEMENT

In this section, we first present lower bounds on the
uncertainty achieved by any placement of sensors in the
plane. We apply this to bound the number of sensors
placed withinA by an optimal algorithm.

First consider the case when the maximum sensing
noiseα ≥ π

2 , i.e., the sensing wedges are at least half-
planes. We show that the adversary can always choose a
valid measurement set for any placement, such that the
sensing wedges have an unbounded intersection.

Lemma 1: For any placementS of n bearing sensors
with maximum absolute noiseα ≥ π

2 , there exists a
measurement setθm such that the intersection of the
wedges (

⋂n

i=1 W (si, θ
m
i
)) is unbounded.

Lemma 1implies that whenα ≥ π

2 the uncertainty
can be as large asA, i.e., UA(S) = Θ(d2) and
UD(S) = Θ(d) for any placement of sensors, including
the optimal. The proof is based on constructing a simple
instance whenα = π

2 , i.e., the sensing wedges are half-
planes. We create a measurement set where the lines
corresponding to all half-planes pass through the target
location. We assign directions to all half-planes to ensure
that their intersection is unbounded.

Lemma 1is not surprising, sinceα ≥ π

2 corresponds
to very high noise. In practice, bearing sensors are much
more accurate. For the rest of the paper, we only focus
on the case when the maximum sensing noiseα < π

2 .
In the following, we will lower bound the uncertainty

for any placement parametrized by the distance of the
target to the closest sensor. Recall fromEquation 1,
the uncertainty is defined as themax over all possible
target locations, and all valid measurements. Hence, for
a lower bound, it is sufficient to consider a particular
target location and valid measurement set, as given next.

Lemma 2: If there exists a circleC with radius r
which doesn’t contain any sensor from a placement

S of n bearing sensors, then the diameter uncer-
tainty is bounded asUD(S) ≥ 2r sinα (respectively,
UA(S) ≥ πr2 sin2 α).

To prove Lemma 2, we show that when the target
lies at the center ofC and each sensor receives a
measurement equal to the true bearing, a circle of radius
r sinα centered at the target lies completely within the
intersection of all sensing wedges. This instance gives a
lower bound for the worst-case uncertainty.

When a desired uncertainty is given, we can apply
Lemma 2to find the radius of the largest such circle
lying in the workspaceA and not containing any sensor.

Corollary 1: Let S∗ be an optimal placement achiev-
ing a desired diameter uncertaintyU∗

D
(respectively, area

uncertaintyU∗
A

) in a square workspace of sided. If r∗ is
the radius of the largest circle lying completely within
A and not containing any sensor in its interior, then

r∗ ≤ U
∗
D

2 sinα
(respectively,r∗ ≤

√

U∗
A

π

1
sinα

).
Corollary 1 implies an upper bound on how far each

point in A can be from any sensor or the boundary
of A. This allows us to bound the number of sensors
required for an optimal algorithm as a function ofr∗.
Corollary 2 states thatΩ(d

2

r2
) sensors are needed to

guarantee coverage of ad× d area.
Corollary 2: Let r∗ be the radius of the largest circle

within a square of sided, not containing any sensor
from an optimal placement in its interior. If the desired
diameter uncertainty isU∗

D
< d sinα (respectively,

U∗
A

< d2 π sin2
α

4 ) then the number of sensors for an

optimal algorithmn∗ ≥ (d−2r∗)2

πr∗2
.

Whend ≤ 2r∗, the desired uncertainty is comparable
to A, and the optimal algorithm would place very few
sensors, yielding a trivial lower bound. The bound on
the uncertainty implies thatd > 2r∗ is an interesting
case: Ifd > 2r∗, then there is a smaller square within
A where all points are more thanr∗ away from the
boundary and hence require at least one sensor within
r∗. We can show that the set of circles of radiir∗ drawn
about each sensor in the optimal placement, should form
a cover of this smaller square, yielding the bound.

V. PERFORMANCE OF THETRIANGULAR GRID

Next, we analyze the number of sensors required
and the uncertainty for a triangular grid-like placement.
While for lower bounds it sufficed to consider specific
instances, upper bounds require considering all possible
target locations and sets of measurements.

A. Uncertainty with Triangular Grid

Before the main analysis, first consider two special
configurations of sensors: (i) three sensors placed on
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the vertices of an equilateral triangle△s1s2s3 with side
r, when 0 < α < π

6 , and (ii) six sensors placed on
the vertices of a regular hexagon whenπ6 ≤ α ≤
π

4 . For case (i), the target may lie anywhere within
△s1s2s3 (Figure 4(a)). We further divide the analysis
into intervals based onα, given next.

Lemma 3: Let △s1s2s3 be an equilateral triangle of
sider with a bearing sensor placed at each vertex. If the
target lies within△s1s2s3 andS = {s1, s2, s3} then

UD(S) ≤















11.35r sinα 0 < α < π

18 ,

2.04r π

18 ≤ α < π

12 ,
(

1 + 1√
3

)

r π

12 ≤ α < π

6

and,

UA(S) ≤











23.46r2 sin2 α 0 < α < π

18 ,√
3r2

4 + 10.1(r sinα)2 π

18 ≤ α < π

12 ,
3
√
3r2

4
π

12 ≤ α < π

6 .

The proof partitions the triangle into three regions, and
assigns sensors for each region such thatany valid
set of measurements results in bounded intersection.
The sensing wedges corresponding to each partition are
approximated to bound their intersection.

Whenα ≥ π

6 , the sensing wedges become too large
to result in bounded intersection with just three sensors.
Instead we use six sensors, placed on a regular hexagon
with centero and sider, to bound their intersection.
The target can lie anywhere within a circle of radius
r√
3

centered ato. We find an upper bound to the
uncertainty, by finding the intersection of the union of
all sensing wedges for each sensor, corresponding to all
target locations within the circle.

Lemma 4: Let s1 . . . s6 be a regular hexagon of sider
and centero with a bearing sensor placed at each vertex,
and maximum absolute noiseπ6 ≤ α ≤ π

4 . If the target
lies inside a circle of radiusr√

3
centered ato then,

UD({s1, . . . , s6}) ≤ r
(

sin2 α+ 3.76 sinα+ 1.232
)

and,UA({s1, . . . , s6}) ≤ 1.5rUD({s1, . . . , s6}.
Lemma 4bounds the intersection when the sensing

wedges are at most a quadrant (α ≤ π

4 ), and the target
lies within a circle of radius r√

3
. Lemma 1shows that

when sensing wedges are at least a half-plane (α ≥ π

2 ),
the resulting intersection can be unbounded in the worst-
case. We can extend the result inLemma 4for α = π

2−ǫ
with 0 < ǫ, to bound the number of sensors placed
on a triangular grid, sufficient to guarantee that the
intersection of all wedges is bounded.

Lemma 5: Let the maximum absolute sensing noise
be α = π

2 − ǫ with 0 < ǫ. If sin−1
(

1√
3k

)

+ π

6(k−1) <

s1

s6

s5 s4

s3

s2

a

e
rs1

r s2s3

(a)

r

(b)

Fig. 4: (a) Based onα, we upper bound the uncertainty
when the target lies within an equilateral triangle or a circle
contained within a regular hexagon of sensors. (b) We pad the
three regions with additional sensors to ensure any point inA
is enclosed by an equilateral triangle of sensors.

2ǫ then O(k2) sensors placed on a triangular grid are
sufficient for bounded intersection of sensing wedges
when the target lies within a circle of radiusr√

3
.

B. Number of Sensors with Triangular Grid

Lemma 3 gives an upper bound on the uncertainty
for a placement of sensors inA, if there exists an
equilateral triangle of sensors enclosing any point inA.
Since the sensors cannot be placed outside ofA, regions
near the boundary ofA may not have an enclosing
equilateral triangle if sensors are placed only on a
triangular grid. The three regions where this occurs are
markedA1,A2,A3 in Figure 4(b). We place additional
sensors within these regions to ensure that any point
in A is enclosed by an equilateral triangle of sensors.
Lemma 6 states thatO(d

2

r2
) sensors are sufficient to

cover a square of aread× d.
Lemma 6 (Upper Bound on Number of Sensors): If

wr = ⌊d/r⌋+1,, wc =
⌊

d/
√
3r
⌋

+1, br =
⌊

(d− r

2 )/r
⌋

,

bc =

⌊

d−
√

3r

2√
3r

⌋

+ 1 are the number of sensors in odd

and even rows and columns, respectively of a
triangular grid with sider in a square of sided, then
wrwc + brbc + 3(2wr + br) + 8 sensors are sufficient
to cover the square with equilateral triangles of sider.

The lower and upper bounds obtained can be ap-
plied to get the main result of this paper: Recall from
Corollary 1, that an optimal algorithm has to place
a sensor within distancer∗ ≤ U

∗
D

2 sinα
(equivalently,

r∗ ≤
√

U∗
A

π

1
sinα

) of every pointA to ensure the desired
uncertainty. For the triangular grid placement, set the

grid length asr =
U

∗
D

2 sinα
(respectively,r =

√

U∗
A

π

1
sinα

).
Hence,r∗ ≤ r. Corollary 2 gives a lower bound on
the number of sensors required for an optimal algorithm
in terms of r∗, and Lemma 6 gives an upper bound
for the grid-like placement in terms ofr. Lemma 3
and Lemma 4 bound the uncertainty of the grid-like
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placement in terms ofr. Using r∗ ≤ r and substituting
the value ofr, the result inTheorem 1can be obtained.

The upper bounds fromLemma 3 and Lemma 4
reveal that only a small number of sensors in our
placement suffice to achieve an uncertainty comparable
to that obtained by combining all measurements. This is
useful when there is prior knowledge about the target
location (e.g. a subset ofA) and only those sensors
corresponding to the enclosing triangle or hexagon need
be queried for their measurements.

Corollary 3: Given a target locationx within a square
and desired diameter uncertaintyU∗

D
(respectively, area

uncertaintyU∗
A

), if sensors are placed on a triangular

grid with sider =
U

∗
D

2 sinα
(respectively,r =

√

U∗
A

π

1
sinα

),
three sensors are sufficient when0 < α < π

6 and six
sensors are sufficient whenπ6 ≤ α ≤ π

4 to ensure diam-
eter uncertainty at most5.88U∗

D
(respectively,7.76U∗

A
).

Corollary 3provides a sensor selection method which
may be useful in sensor network applications with
energy or bandwidth constraints that require activating
only a small number of sensors.

VI. CONCLUDING REMARKS

In this paper, we studied a placement problem for
bearing sensors. We used a bounded uncertainty formu-
lation which allowed us to represent each measurement
as a wedge containing the target’s location. The quality
of the estimated target location was quantified by the
diameter or the area of the intersection of wedges. In
this setting, a fundamental question that arises is: What
is the minimum number and placement of sensors that
guarantees that no matter where the target is, or what the
actual measurements are, the uncertainty in the estimate
is below a desired level?

This basic question turned out to be surprisingly
hard due to the fact that the quality of the estimation
depends on the locations of all sensors as well as the ac-
tual measurements. Our results provided insights about
the structure of this problem and yielded a placement
scheme with constant-factor approximation guarantees.
In particular, we showed that unless the sensor noise is
too large, a placement of sensors on a triangular grid
yields a good performance. Further, (excluding some
extreme cases) we showed that for the triangular grid
placement, if a rough estimate of the target location is
available, one can obtain a good estimate by querying
only a fixed number of sensors. This latter sensor
selection scheme is particularly appealing for resource
constrained sensor-network applications.

Can this result be improved, perhaps by showing
that the triangular placement is optimal? This is a

question we pursue in our future work. Future work also
includes addressing sensing limitations such as visibility
constraints and placement in complex environments.
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